I start with points x on the unit circle (marked in blue), calculate xx, and connect the dots for the results in green. There are a few red lines to guide the eye showing what points on the unit circle map to points on the new curve.
Now since 1=e2πN where N is an integer, there can be a lot of different results. The simplest case is N=0, of course. In that case −1−1=−1. The point where the curve crosses itself is at (e−π/2,0).
A bit twisted.
If you're curious what happens when N=1 (I was), look at this.
The real curve is smooth; I only used a few points to calculate it which is why it looks jerky. There's a bit of swooping around 0 that doesn't show up at this resolution. To see that, look at the central part. For N=-2, -1, 0, 1, 2, the central part looks like this:
There are things that look like 1 that don't entirely act like 1.
No comments:
Post a Comment